

CII National Award for Excellence in Energy Management 2022

Hindalco Industries ltd. Unit : Mahan Aluminium, Singrauli (M.P)

Team members: Mr. S.P. Singh – General Manager – Technical Service Mr. Vijay Bansal - Sr. Manager – Technical Services

Company Profile – Hindalco Mahan

- A flagship company of the Aditya Birla Group
- First unit was commissioned in March,2013 and last unit in September,2016.

150x6 = 900 MW

Integrity	Commitment	Passion	Seamlessness	Speed

2009-10

Foundation Laid 9th July 2009

2009-10

DITYA BIRL

2021-22

" Excellent Energy

Efficient plant" by CII

Award from Econour

Runner Up Sustainability

Certificate of Approval Hindalco Industries Lin

Har Blan

Integrity	Commitment	Passion	Seamlessness	Speed

Integrity

Energy Consumption Overview _Thermal

Integrity	Commitment	Passion	Seamlessness	Speed

Energy Consumption overview _Electrical

Area	FY 20-21 MWh/day	FY 21-22 MWh/day	Reduction in MWh/day	% Reduction in Auxiliary Power consumption	FY 20-21 Average Aux power ~ 1067.52 MWh
СНР	20.03	19.11	-0.92		
АНР	40.29	31.70	-8.59		
Water system	43.18	45.10	+1.92		
Construction,					FY 21-22 Average
colony	11.56	12.59	+1.03		1049.57 MWh
BTG	952.46	941.07	-11.39		
Total	1067.52	1049.57	-17.95	1.7%	

INDALCO	Confederation Indian Indust		
Parameters	unit	FY 21	FY 22
Power Generation	MU	5451	5576
Plant Load Factor	%	69.1	70.73
Plant Availability	%	83.75	83.44
Gross Heat Rate	Kcal/kWh	2432	2394
Auxiliary Power Cons	%	7.11	6.95
Boiler Efficiency (Station wise)	%	86.23	86.34
Turbine Efficiency (Station wise)	%	2068	2071
Specific DM water cons.	%	0.62	0.52
Raw water cons.	ltr/kWh	2.351	2.289
Specific Oil Cons.	ml/kWh	0.10	0.12
Integrity Commitment	Passion	Seamlessness	Speed

Mahan CPP – Sp. Energy Consumption (FY 19-FY 22)

CII

Confederation of

Heat Rate Improvement initiatives taken during FY 22

- 1. Condenser vacuum improvement (5 mm Hg) by arresting air ingress from LP area, Cooling Tower fills cleaning, modification of cooling water pumps impellers and optimization of CT fan blade angle.
- 2. Vacuum improvement by improving CW water quality through NOB(Non oxidizing biocide) and hypo dosing.
- 3. Condenser backwashing during unit running condition.
- 4. Boiler Efficiency improved (0.2%) by arresting the air ingress across APH, sealing the gap between baskets, coal burner tip replacement/repairing.
- 5. Net Heat rate reduced from previous year due to improved auxiliary power consumption.

Integrity	Commitment	Passion	Seamlessness	Speed	
-----------	------------	---------	--------------	-------	--

Mahan CPP – Sp. Energy Consumption (FY 19-FY 22)

A. APC Initiatives

ADITYA BIRL

- Mill operation reduced from 4 to 3 based on feeding coal quality
- Operation of 1 pumps in each unit
- Optimizing main plant compressors
 power consumption.
- Increasing coal feed factor of CHP conveyors
- Reduction of AHP specific power consumption

B. Specific Oil Consumption

- Reduction in unit startup time by hot water flushing, condensate dumping & erection of bypass line for main steam silica
- Clubbing oil gun trial with PM activity
- Ensure air blaster healthiness of coal bunkers in rainy seasons
- Periodic Coal bunker cleaning
- Covering coal heaps during monsoon

C. Boiler Efficiency

- Reduction in Dry flue gas losses
- Reduction in Unburnt losses
- Reduction in Mill reject losses
- Reduction in cycle make up

Integrity	Commitment	Passion	Seamlessness	Speed

ADITYA BIRLA

Benchmarking for 150 MW for FY 22

National Benchmarking

PARAMETERS	UOM	National Best	Mahan Aluminium FY 22	Reference
Gross Heat Rate	Kcal/kWh	2450	2394	
Turbine Heat Rate	Kcal/kWh	1970	2071	
Aux Power consumption	%	6.92	6.95	Thermal power Sep 18
Plant load factor	%	80	70.73	
Plant availability factor	%	84	83.44	
Sp. Oil consumption	ml/kWh	0.1	0.12	Reference 135- 150 MW range

Benchmarking

Short term Goal:

- Implementation of EnCon Projects as per MEA audit.
- Industry 4.0 -Digitalization
- Exploring latest technologies and advanced software
- 100% Ash utilization
- Commissioning of 35 MWe Solar PV plant

Integrity Commitment Passion Seamlessness Speed

Commissioning of FGD system

DCS upgradation

from GAIL

Installation of 7MWe Floating Solar power plant

Exploring feasibility for utilization of natural gas

Internal Benchmarking for 150 MW

	Aditya		Mahan		RSG		HKD	
UOM	FY22 Actual	FY22 P&B	FY22 Actual	FY22 P&B	FY22 Actual	FY22 P&B	FY22 Actual	FY22 P&B
MU	5623	5648	5576	5568	6270	6159	3029	3004
%	71.33	71.6	70.7	70.6	86.7	84.8	74.0	73.4
%	85.96	85.90	86.34	85.4	86.1	85.8	86.3	86.1
Kcal/KWH	2419	2420	2394	2443	2585	2584	2738	2625
.96	7.18	7.75	6.95	7.44	7.83	8.01	5.08	9.11
ml/KWH	0.12	0.24	0.12	0.20	0.21	0.31	0.08	0.08
Kcal/Kg	3430	3571	3755	3700	3975	3739	3342	3217
	UOM MU % % Kcal/KWH % ml/KWH Kcal/Kg	UOM FY22 Actual MU 5623 MU 5623 % 71.33 % 85.96 Kcal/KWH 2419 % 7.18 ml/KWH 0.12 Kcal/Kg 3430	Aditya UOM FY22 Actual FY22 P&B MU 5623 5648 MU 5623 5648 % 71.33 71.6 % 85.96 85.90 Kcal/KWH 2419 2420 % 7.18 7.75 ml/KWH 0.12 0.24 Kcal/Kg 3430 3571	Aditya Mail UOM FY22 Actual FY22 P&B FY22 Actual MU 5623 5648 5576 MU 5623 5648 5576 % 71.33 71.6 70.7 % 85.96 85.90 86.34 Kcal/KWH 2419 2420 2394 % 7.18 7.75 6.95 ml/KWH 0.12 0.24 0.12 Kcal/Kg 3430 3571 3755	Aditya Mahan UOM FY22 Actual FY22 P&B FY22 Actual FY22 P&B MU 5623 5648 5576 5568 MU 5623 71.6 70.7 70.6 % 71.33 71.6 70.7 70.6 % 85.96 85.90 86.34 85.4 % 2419 2420 2394 2443 % 7.18 7.75 6.95 7.44 ml/KWH 0.12 0.24 0.12 0.20 Kcal/Kg 3430 3571 3755 3700	Aditya Mahan RS UOM FY22 Actual FY22 P&B FY22 Actual FY22 P&B FY22 Actual S568 6270 S568 6270 S568 S567 S568 S617 S568 S568 S617 S568 S568 S617 S568 S568 S569 S568 S569 S568 S569 S568 S617 S568 S561 S568 S563 S56	Kcal/KgAdityaMahanRSGUOMFY22 ActualFY22 P&BFY22 P&BFY22 ActualFY22 P&BMU562356485576556862706159%71.3371.670.770.686.784.8%85.9685.9086.3485.486.185.8%241924202394244325852584%7.187.756.957.447.838.01ml/KWH0.120.240.120.200.210.31Kcal/Kg343035713755370039753739	Aditya $Mahan$ RSG Hk UOM $FY22 Actual$ $FY22 P&B$ $FY22 Actual$ $FY22 P&B$ $FY22 Actual$ $FY22 P&B$ $FY2 P&B$ <td< td=""></td<>

Integrity	Commitment	Passion	Seamlessness	Speed

Energy S	Saving Pro	jects pl	anned ir	h FY 23	3	Confederation of Indian Industry
Details of initiatives	Potential Gain	Targ	et Date		Status till July,2	2
LED replacement in BTG & CHP	20 kW	М	ar'22	Completed	t	
VFD installation in LDO Forwarding pump	8 kW	Ju	ıly'22	Completed		
ASTRO Timer installation in High mast and outdoor lighting	8 kW	0	ct'22	23/41 Cor	npleted.	
Installation of VFD in AHP - Seal water pump or LP pump	15 kW	М	ar'23	Taken in F	Y'23 Capex	
Increasing 5A/B conveyor loading factor	100 kW	A	pr'22	PO raised material not received, Load factor is 1227 TPH up to 01.04.2022.		Loading 2022.
Increasing 7A/B conveyor loading factor	100 kW	М	ar'22	Completed	đ	
Boiler -5&6 Duct modification by CFD to reduce ID fan Power	150 Kw for 2 unit	Unit# Unit#6	5- Apr'22 5 -Sep'22	Completed	d Unit#5	
Efficiency improvement of raw water pumps	40 kW, Capex proposed	Sep'22		PO Pending		
De staging of boiler feed pump	1000 kW for 5 units March'23		rch'23	Completed achieved.	d in BFP-4A, 190 KW sa	iving
Total Estin	mated Saving : 14	40 kW (0.15	% reduction)]		
Integrity Commitment	Pas	sion	Seamlessne	ess	Speed	

Energy saving projects implemented during FY 19-FY 22

FY 19-20

No. of projects :13

Saving in lakh Kwh:142.29

Total savings in Million Rs :135.13

FY 20-21

No. of projects :12

Saving in lakh Kwh:84.8

Total savings in Million Rs :89.54

FY 21-22

No. of projects :3

Saving in lakh Kwh:29.99

Total savings in Million Rs : 3.46

Integrity	Commitment	Passion	Seamlessness	Speed

Innovative Project: Heavy vehicle tracking & fuel optimization

Background of problem :

- Mahan CHP is handling 3.8 million tons of coal per annum. We are equipped with heavy earth moving equipment like Bull Dozers (05 Nos.), Excavator (01 No), Front wheel loader (01 No), skid steer loader (02 Nos.) for coal yard management activities such as stacking, loading, heap compaction, heap shaping, mill rejects handling, dozing coal into hoppers etc.,
- In order to carryout mentioned activities, 754 KL of High-speed diesel is been used for HIL owned equipment and 117 KL in Hired equipment for a period of 12 months (April 2021 to Mar 2022).
- Mahan may spend around 8.39 Crores on diesel which is ~38% of CHP Annual budget
- Unnecessary idling time, bad driving habits, pilferage if any may reduce fuel efficiency minimum by 5-10% which is a big potential loss

Solution :

Innovative Project: Potential financial benefits after project implementation

- Diesel cost incurred for 12 months in HIL owned vehicles Rs. 6.56 Cr.
- Diesel cost incurred for 12 months in Hired vehicles Rs. 1.12 Cr.
- If HIL is providing diesel to Hired vehicles, a savings of Rs. 9.04/- per liter on account of R&M cost will get reduced which is in a tune of Rs. 11.53 lakhs per annum will be saved.
- Considering recovery of predicted 3% potential loss, we can save Rs. 25 lakhs per annum as a minimum in other terms 29 KL of diesel consumption.
- A total of Rs. 36.53 lakhs recurring savings per annum can be done with Overall cost of 21 no's equipment subscription & analyst charges (one time) Rs. 16.14 lakhs per annum

7. Utilization of Renewable energy sources

Project - Renewable Solar Power - 35 MW

Commissioning Target : Commissioned sync permission awaited

Technology : Solar Energy Photovoltaic cell

Jobs completed : Yes

Status: Synchronization Permission pending

Technology (Electrical)	Type of Energy	Installed Capacity (million kCal)	Usage (million kCal)	% of overall thermal energy
Electrical	Solar Energy	NA	NA	NA
Integrity	Commitment	Passion	Seamlessness	Speed

Beginning of Transformational Journey : Reduction in carbon footprint at Hindalco Mahan

" Successful development of solar operated vehicle and solar pump"

Team CPP mechanical made the solar operated vehicle from the scrap available at site under "waste to wealth scheme " with mere investment in Solar panel only. This prototype has been made to built up the confidence of team and to have a sustainable development towards reduction in carbon footprint at Hindalco, Mahan. Team is now geared up to make the "solar operated vehicle for passenger movement and material movement for plant and township team "

"At Hindalco, we have invested in renewable energy, rainwater harvesting, waste recycling, green products and more. We are working steadily towards Net Zero carbon, Net Zero waste to landfill and Net Water Positive by 2050.

Going ahead, Team CPP mechanical has made operational the inhouse made solar operated passenger and loader vehicle with all safety features at Hindalco Mahan after successful trial run of prototype vehicle on 26th Jan'22 under waste to wealth scheme

Team has also commissioned solar operated pump for recycling of water in remote locations, a step towards reduction in carbon footprint.

Looking forward to deployed a multi-pronged approach to limit our carbon footprint for <u>sustainable development</u> while ensuring Hindalco been a "Manufacturing company that is greener, smarter, and better"."

8. Environment Management -Ash Utilization

DITYA BIRLA

Ash Utilized in manufacturing of cement/ % 63.2% 77.4% 84.4% 2019-20 2020-21 2021-22

1st Fly ash disposal through Rake started on 28th Oct'20. Total 44 rakes dispatched during the year.

In House Fly ash brick manufacturing plant. Fly ash Brick plant commissioned on 27th Jan'21

Integrity Commitment Passion Seamlessness Speed	Integrity	Commitment	Passion	Seamlessness	Speed
---	-----------	------------	---------	--------------	-------

8. Environment Management -Ash Utilization

Particulars	UOM	2019-20	2020-21	2021-22
Ash Stock in plant(Yard+pond)	Tons	2028910	1820231	1845439
Ash Generated	Tons	1294050	1274115	1154915
Ash Utilization	%	67.8	77.51	88.9
Ash Utilized in manufacturing of cement/	%	63.2%	77.4%	84.4%
Ash Utilized for Fly ash Brick	%	0%	0.11%	.001%
Ash Utilized for Mine Filling	%	0%	0%	4.3%
Ash Utilized for Road pavment	%	4.63%	0%	0.199%
Ash Utilized in other areas	%			
Ash loading side bed leveling	%	0	0	0
Internal construction activities	%	0	0	0

Ash Handling through	Various	Methods
Ash Handling through (Wet Method)	%	10
Ash handled(Dry Method)	%	90
Ash handled (Semi wet))	%	0

Commitment

Integrity

ADITYA BIRLA

Salient Features:-

- Long term agreement with M/s. Prism cement and UltraTech cement.
- Ash utilization in land reclamation and road construction
- Ash utilization in brick plant .

Ash Generation & Utilization comparison:

CII

Confederation of

100% Fly ash utilization :

- Entire fly ash supply to cement vendors through bulkers & rakes
- **>** Use of fly ash in brick plant -10 lakhs bricks per annum
- Technical support to near by external fly ash brick manufacturers

To increase Bottom ash utilization

- > More bottom ash utilization in road construction
- > Rake disposal to cement plants 10 rakes per month

TARGET ASH UTILIZATION FY-22: 95%

Integrity Commitment Passion Seamlessness Speed

Best practices – Afforestation at Mahan

- Total area of the plant and township is 3104 Acre.
- Area required for green belt development (33% of 3104) acre is 1024.32.
- Green belt and garden developed in 1050.68 Acre.
- Compliance status as on July,2021 is 33.85 %.
- Planted 10.29 Lakhs trees in 1013.3 Acre.
- The average survival of green belt is 74.15 %
- We have developed landscape garden in 37.65 Acre.

	_	_		_	-
				•	
_				-	
		_	_	_	
		_			

Commitment

Passion

Seamlessness

Speed

8. Environmental Management - Emission					
Particulars	UOM	2019-20	2020-21	2021-22	
Specific CO2 Emission per MWh Generation	Ton/MWh	1.03	1.01	0.977	
Current SOx Emissions at Full Load*	mg/Nm3	444.0	370.0	315.0	
Current NOx Emissions at Full Load*	mg/Nm3	222.0	191.0	174.0	
Particulate Matter *	mg/Nm3	38.0	40.0	43.0	
Mercury* *	mg/Nm3	0	0	0	

Best practices adopted for Emission control and monitoring

HINDALCO	tal Management – Emission @unit level					
Scope 1&2 energy	FY 20	FY 21	FY 22			
Equivalent Production (MT)	365892	358646	369790			
Fuel Type	Ther	mal Energy (Million k	Cal)			
Coal	13865550	13363781	13254096			
LDO-Power Plant	7779	4998	6238			
HSD-Power	736	515	528			
HSD-Material Handling	15607	16431	15559			
FO-Process(CH)	23257	18595	23898			
FO-Process(Anode)	88915	89228	89283			
Propane	2309	1631	1688			
Total Thermal (Million kCal)	14004152	13495179	13391291			
Absolute emission (LT Co2)	59.808	57.724	58.279			
Integrity	Passion	Seamlessness	Speed			

Monthly T CO2/T

19 18.57 18.5 18 17.5 17 16.346 16.5 16.095 15.86 15.86 15.83 15.81 15.76 16 15.5 15 14.5 14 FY-15 FY-20 FY-21 YTD FY 22 May-22 YTD FY 23 Apr-22 **P&B FY-23** Baseline

(T	CO2/T)	

Integrity	Commitment	Passion	Seamlessness	Speed

8. Environmental Management - Emission

Flue gas Desulphurization (mg/Nm³)

- Purpose-To Control the Sox level below 600 mg/Nm³
 Technology :Semi Dry Flue gas Desulphurization system
- •Target Commissioning –Sep' 22
- •Target Emission:- 600 mg/Nm³

Status : Implementation is under progress

Suspended Particulate Matter (mg/Nm³)

To Control the spm below 50 mg/Nm³

- Technology : High frequency three phase transformer & Micro pulse
- Emission: Below 50 mg/Nm³
 Status: Completed

Project – De- Nox (mg/Nm³)

To control the Nox below 290 mg/Nm³ @ 6 % O₂ Technology : The new combustion system consists of new Burner tips and Separate Over Fire Air (SOFA) system. Completed in Unit#3 Status: Completed (Presently Nox value in other units is within limit)

Integrity Commitment Passion Seamlessness Speed	
---	--

Environmental Management - Water

Our plant is ZLD plant.

ADITYA BIRLA

Initiatives to reduce water consumption :

MOV installed & commissioned for Real Time View of Water Flow Silica analyzer commissioned for New Turbidity meter AUTO operation at CHP pump on SCADA at DM Plant Strong Base Anion(SBA) and Mixed installed and house service water line to reduce Bed at DM Plant for Online commissioned for Raw the water overflow and wastage Monitoring of Silica. Water for online of service water. monitoring

Integrity	Commitment	Passion	Seamlessness	Speed
-----------	------------	---------	--------------	-------

9. Best Practices – 0&M Excellence

1	Boiler Tube Leakages reduction	By ensuring 100% RT of weld joints and application of Plastic Refractory in burner area.
2	Effective Coal Management and Accounting	Drone survey on weekly & Total Station survey on monthly basis
3	100% PM & CBM Compliance	ZERO critical equipment in RED ZONE since last 1 year
4	Sp. Oil reduction program	Sp.oil consumption has reduced from 0.26 ml/kWh to 0.1 ml/kWh
5	Reduction in Auxiliary Power Consumption	By optimizing the operational procedures
6	Electrical system a Before monsoon	Audi No black out due to electrical fault
	Integrity Commitme	nt Passion Seamlessness Speed

9. Best Practices – 0&M Excellence

Integrity Commitment Passion Seamlessness Speed

ADITYA BIRLA

HINDALCO

	Integrity	Commitment	Passion	Seamlessness	Speed
--	-----------	------------	---------	--------------	-------

9. Best Practices - CSCTS

Integrity Commitment Passion Seamlessness Speed	
---	--

Awards and Accolades FY 22

Mahan CPP – Won 22nd National Award for "Excellent Energy Efficient Plant" in Energy Management 2021" from CII

CII National Poka Yoke Competition 2022

Mahan CPP received the Best Energy Efficient Plant Award from Mission Energy Foundation in February 2021

Won Gold and Silver prize in CII National office Innovation Competition 2022

	Integrity	Commitment	Passion	Seamlessness	Speed
--	-----------	------------	---------	--------------	-------

Hindalco Mahan - Energy Monitoring

1	Daily Ener Generation	gy n report	2	Daily online TG Heat rate and Boiler Efficiency calculation	3	Daily Coal M deviation ana	IS and alysis
4	Daily Area Aux power consumpti	wise r ion report	5	Monthly Turbine and Boiler performance	6	Monthly conc performance	denser study
7	Boiler & TO performan before and overhaulin	G ice Jafter g	8	Daily review of deviation in PHR and Boiler efficiency	9	Quarterly insi survey	ulation
10	Monthly re with Unit H Corporate	eview lead and Team	11	Online monitoring of APH outlet O2	12	Weekly Wat Steam, Oil leakages sur	vey
Integ	rity	Comm	itment	Passion	Seaml	essness	Speed

Mahan CPP- Energy Monitoring

Integrity Commitment	Passion	Seamlessness	Speed	
----------------------	---------	--------------	-------	--

ISO : 50001 EnMs System and Policies

9001:2015

14001:2015

45001:2018

Integrity Commitment Passion Seamlessness Speed

Awareness & Development

Mahan has aligned its Sustainability Strategy with the group's sustainability matrix.

Sustainability Strategy

- Business goals and Sustainability goals are shared regularly
- Monthly Energy Webinar for metal Business
- Monthly performance review at Corporate level
- Participation in Biennial ABG Energy Stride Competition
- Participation in annual ABG Sustainability Conference

Competitive Environment

- PRIDE Awards
- Employee of the month award at supervisory level
- Instant Shabashi award at Supervisory level
- Quarterly Kaizen Competition at workmen level
- Best Small Group Awards at Staff & workmen level
- Award for contractual workmen on Independence & Republic day

Awareness and Training

- Annual Energy Conservation Day celebrations on 14th December every year .
- Training on PAT cycle
- Training on Energy Conservation Measures & projects
- Awareness program on ABG Energy and Carbon policy
- Young engineers encouragement for Energy Auditors / Managers certification examinations.

Integrity	Commitment	Passion	Seamlessness	Speed
-----------	------------	---------	--------------	-------

Thank You